

Figure 1 REFORM Logo

Links:

REFORM website: www.reformrivers.eu

REFORM wiki: <u>http://wiki.reformrivers.eu</u>

REFORM training lectures: <u>https://www.youtube.com/playlist?list=PLKAZHri1nLrYituXeVn4KR_5p3_y6J0vF</u>

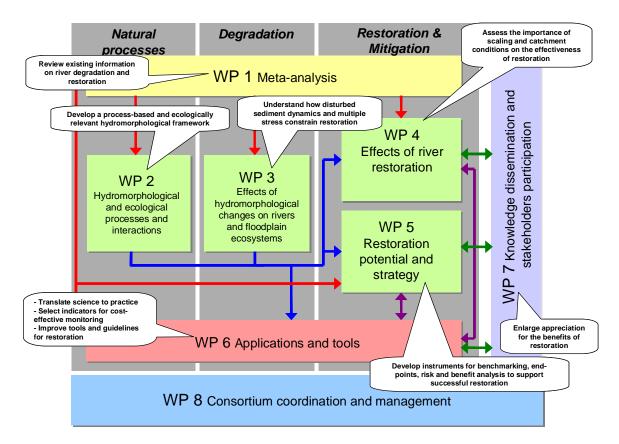


Figure 2 REFORM structure: title and key objectives of each work package, while arrows indicate the connection between the work packages

Figure 3 Participants attending the 4th all partner meeting of REFORM (Baeza, Spain, June 2014)

Supporting information final report REFORM (FP7 GA 282656)

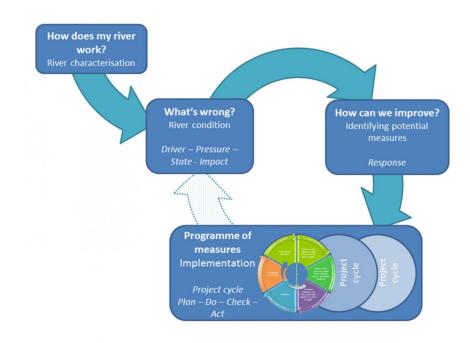


Figure 4 Logical structure of the outcome of REFORM in line with the planning process of river basin management (Deliverable 6.3)

Figure 5 Home page of the restructured REFORM's WIKI to be better inline with the planning processes of river basin management (<u>http://wiki.reformrivers.eu</u>)

Figure 6 REFORM's communication & dissemination strategy (Deliverable 7.1)

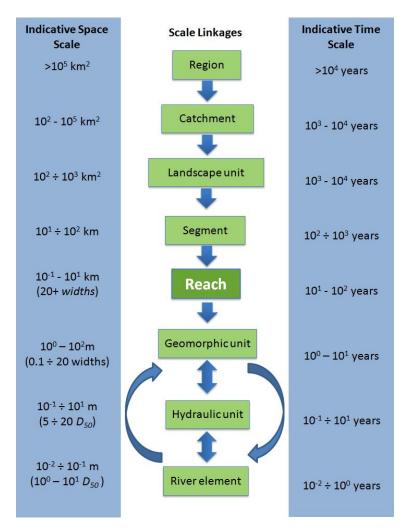


Figure 7 Hierarchy of spatial scales for the European Framework for Hydromorphology, including indicative spatial dimensions and timescales over which these units are likely to persist. (Deliverable 2.1)

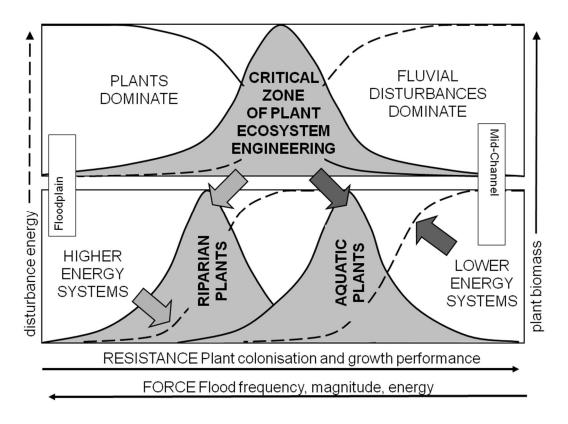


Figure 8 Plants are ecosystem engineers: interactions between vegetation and hydromorphology in rivers, streams, riparian zones and floodplains. (Deliverable 2.2)

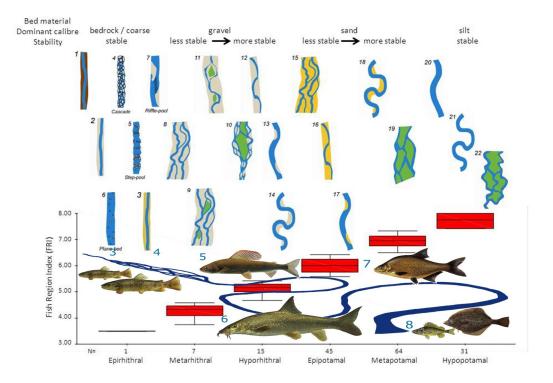


Figure 9 Ecological relevance of the hydromorphological framework: connecting fish guilds to river types (Deliverable 2.2)

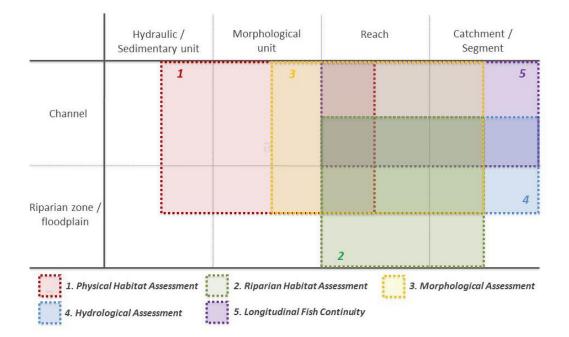


Figure 10 Spatial context, spatial scales and overlap between assessment method categories (Deliverable 1.1)

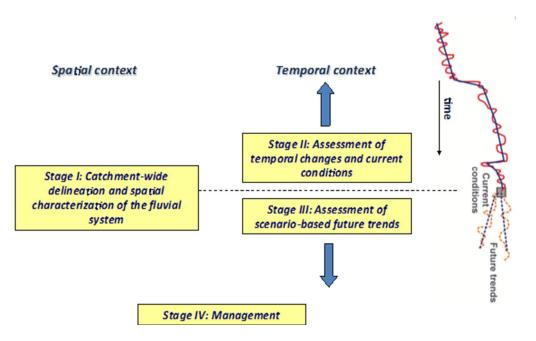


Figure 11 Structure of the overall hydromorphological framework. On the right side, the graph emphasises that the present state of the river system represents a spot within a long trajectory of evolution that needs to be known to understand current conditions and possible future trends. (Deliverable 6.2)

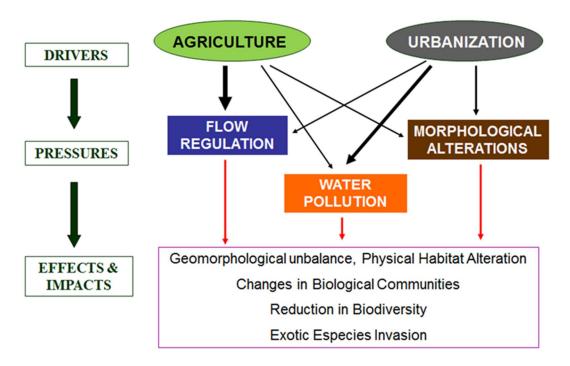


Figure 12 Main drivers (agriculture and urbanization) showing the pressures (flow regulation, water pollution and alteration of natural forms and fluvial processes) that they create, and the effects that occur in river ecosystems through generated impacts (Deliverable 5.3)

	General Scheme	
PRESSURES	HYMO PROCESSES	HYMO VARIABLES Area of new vegetation
 Alteration of instream habitat Alteration of riparian vegetation Artificial barriers downstream from the site Artificial barriers upstream from the site Artificial barriers upstream from the site Channelization / Cross section alteration Collinear connected reservoir Diffuse source pollution Discharge diversions and returns Embankments, levees or dikes Groundwater abstraction Hydrological regime modification: timing or quantity Hydropeaking Impoundment Inter-basin flow transfers Loss of vertical connectivity Point source pollution 	 Armouring Water flowing Sediment entrainment Sediment transport Sedimentation Bank erosion and failure Bank stabilization Vegetation encroachment Vegetation derooting Vegetation recruitment Large wood entrainment Large wood deposition Aquifer recharge Aquifer discharge 	colonization Bank (structure variability, stability) Channel variables Channel continuity Drought (duration and frequency) Flood variables Flow variables Sediment variables (bed load, wash load) Riparian cover area Riparian corridor continuity (%) Planform variables Isolated segment (number and size) Thalweg variables LWD Nutrient concentration
Reservoir flushing	PQ PROCESSES	 Nutrient concentration Oxbow (drought, filling)
Sand and gravel extraction Sediment discharge from dredging Sediment input Surface water abstraction Large Dams & Reservoirs	Thermal changesNutrient ChangesREDOX	 Phreatic (level and constancy) POM Substrate size Interstitial capacity

Figure 13 Pressures, hydromorphological processes and variables connected (Deliverable 1.2)

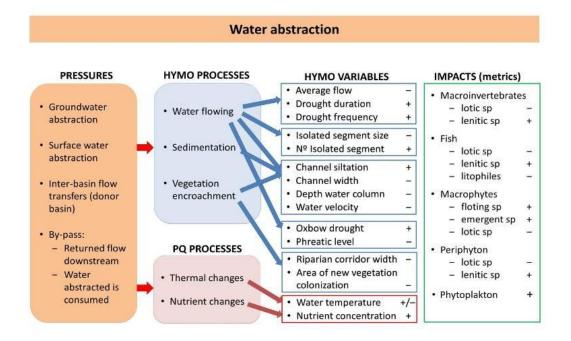


Figure 14 Conceptual framework how water abstraction affects HYMO processes and variables and impacts biota (Deliverable 1.2)

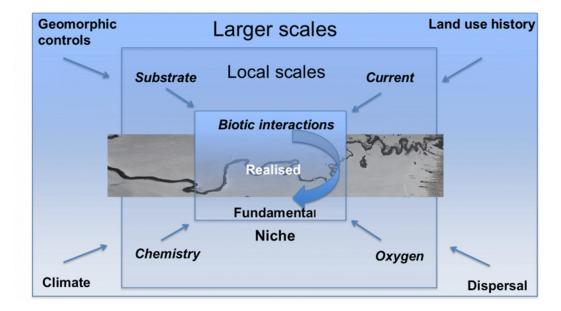


Figure 15 Why is it so complicated to unravel the impact of pressures on biotia? Community composition of river biota is determined by a number of interacting factors across scales (Deliverables 3.1, 3.2, 3.3).

Mid-sized low	lands rivers	Mid-sized mo	untain rivers	
Where?	Who?	Where?	Who?	North
Em / Mörrum	SLU	Ruhr / Lahn	UDE	
Skjern / Stora	NERI	Thur / Töss		
Regge / Dommel / Dinkel	Alterra	Drau / Enns	воки	
Spree / Lippe	IGB	Becva / Morava	ми	
Narew / Warta	WULS	Kuivajoki/Vääräjoki	SYKE	
				26

Figure 16 Standardised sampling of restored reaches across mid-sized rivers in Western, Central and Northern Europe (Deliverables 4.2, 4.3 and 4.4)

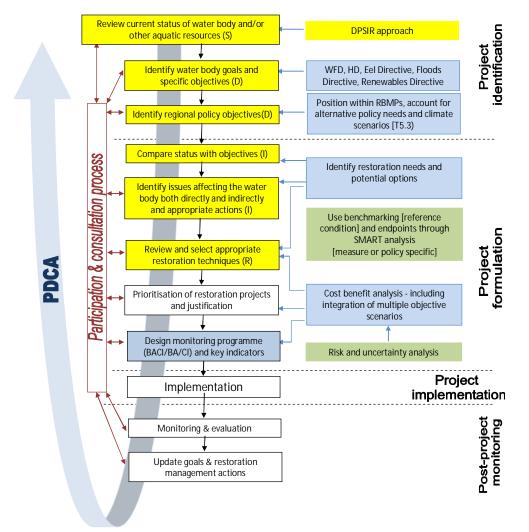


Figure 17 Planning protocol for restoration projects (Deliverable 5.1)

Figure 18 An impression of the breakout sessions during the stakeholder workshop (Deliverable 7.3)

Figure 19 Impressions of the final conference of REFORM (Deliverable 7.5)

Partner	Name	Email	Role
Deltares	Tom Buijse	tom.buijse@deltares.nl	Coordinator
Alterra	Piet Verdonschot	Piet.Verdonschot@wur.nl	partner
BOKU	Susanne Muhar	susanne.muhar@boku.ac.at	WP4 co-lead
IRSTEA	Benoit Camenen	benoit.camenen@irstea.fr	partner
Deltares	Erik Mosselman	erik.mosselman@deltares.nl	WP6 lead
DDNI	Mircea Staras	mstaras@ddni.ro	partner
EAWAG	Peter Reichert	Peter.Reichert@eawag.ch	partner
Ecologic	Eleftheria Kampa	eleftheria.kampa@ecologic.eu	WP7 lead
FVB-IGB	Christian Wolter	wolter@igb-berlin.de	WP1 lead
ISPRA	Martina Bussettini	martina.bussettini@isprambiente.it	partner
JRC	Wouter van de Bund	wouter.van-de-bund@jrc.ec.europa.eu	partner
MU	Karel Brabec	brabec@sci.muni.cz	partner
NERC- CEH	Matthew T O'Hare	moha@ceh.ac.uk	WP3 co-lead
QMUL	Angela Gurnell	a.m.gurnell@qmul.ac.uk	WP2 lead
SLU	Frauke Ecke	frauke.ecke@slu.se	partner
SYKE	Seppo Hellsten	seppo.hellsten@ymparisto.fi	partner
UDE	Daniel Hering	daniel.hering@uni-due.de	WP4 lead
UHULL	Ian G Cowx	I.G.Cowx@hull.ac.uk	WP5 lead
UNIFI	Massimo Rinaldi	mrinaldi@dicea.unifi.it	WP6 co-lead
UPM	Diego García de Jalón	diego.gjalon@upm.es	partner
VU-VUmc	Roy Brouwer	roy.brouwer@vu.nl	WP5 co-lead
WULS	Tomasz Okruszko	T.Okruszko@levis.sggw.pl	WP2 co-lead
AU-NERI	Annette Baattrup- Pedersen	abp@dmu.dk	partner
CEDEX	María Isabel Berga Cano	M.Isabel.Berga@cedex.es	partner
NIVA	Nikolai Friberg	Nikolai.Friberg@niva.no	WP3 lead
EA	Judy England	judy.england@environment- agency.gov.uk	partner

Table 1 REFORM partners and contact persons